The electron-density peaks $\Delta \rho_{\text{max}}$ and $\Delta \rho_{\text{min}}$ are at 0.82 and 0.79 Å from Cd4 and Cd3, respectively.

Data collection: *DIF4* (Stoe & Cie, 1987). Cell refinement: *DIF4*. Data reduction: *REDU4* (Stoe & Cie, 1987). Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *ATOMS* (Dowty, 1995).

We are greatly indebted to Professor Dr E. Holt for fruitful discussions. One of the authors (LE) wishes to thank the DFG for a grant which made his stay at Kiel University possible.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1215). Services for accessing these data are described at the back of the journal.

References

- Abrahams, S. C. & Marsh, P. (1983). Acta Cryst. C39, 680-683.
- Ben Amara, M., Olazcuaga, R., Le Flem, G. & Vlasse, M. (1979). Acta Cryst. B35, 1567–1569.
- Ben Amara, M., Vlasse, M., Olazcuaga, R. & Le Flem, G. (1979). Acta Cryst. B35, 50-52.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Dowty, E. (1995). ATOMS for Windows. Version 3.2. Shape Software,
- 521 Hidden Valley Road, Kingsport, TN 37663, USA. Eddahby, L., Berrada, A., Boukhari, A. & Holt, E. M. (1997). Eur. J. Solid State Inorg. Chem. 34, 527-551.
- Holt, E. M., Drai, Olazcuaga, S. & Vlasse, M. (1977). Acta Cryst. B33, 95-98.
- Olazcuaga, R., Vlasse, M. & Le Flem, G. (1977). C. R. Acad. Sci. Paris Ser. C, 284, 963–966.
- Pertlik, F. (1987). Acta Cryst. C43, 381-383.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Stoe & Cie (1987). DIF4 and REDU4. Programs for Data Collection and Data Reduction. Stoe & Cie, Darmstadt, Germany.
- Von Postel, M. & Muller-Buschbaum, H. (1993). Z. Anorg. Allg. Chem. 619, 617–620.

Acta Cryst. (1999). C55, 1746-1748

fac-Triaquatrichloroindium(III)

DAMIAN R. ARIS, WILLIAM ERRINGTON AND GERALD R. WILLEY

Department of Chemistry, University of Warwick, Coventry CV4 7AL, England. E-mail: w.errington@warwick.ac.uk

(Received 1 June 1999; accepted 29 June 1999)

Abstract

The structure of the title compound, $[InCl_3(H_2O)_3]$, features In atoms in a distorted *fac*-octahedral geometry and involves a three-dimensional network of intermolecular

hydrogen bonding. It is the first structurally characterized example of a discrete tris-hydrate of a Group 13 M^{III} halide (M = B, Al, Ga or In).

Comment

The title compound, (I), was obtained as a side-product from an anaerobic study of indium trichloride with *n*-butyl acetate (3 equivalents) in hexane. This solution was stored at 278 K for several days, resulting in the slow deposition of colourless block-shaped crystals which were stable within the reaction mixture. On removal, the crystals rapidly decomposed (hydrolysis), even under an atmosphere of dry argon. The crystal for the present X-ray study was obtained by manipulating the crystals under a layer of sodium-dried nujol. The trace of water required in the formation of compound (I) was probably derived from the commercial sample of *n*-butyl acetate.

Although several stable hydrates of the Group 13 trihalides MX_3 (M = B, Al, Ga or In; X = halogen) are known, structural reports are restricted to anionic forms such as K[InBr₄(H₂O)₂] (Wignacourt *et al.*, 1980) and Cs₂[InCl₅(H₂O)] (Atkinson & Field, 1970). The InCl₃(H₂O)₃ moieties in [*fac*-InCl₃(H₂O)₃]·18-crown-6 (Streltsova *et al.*, 1991) and [*fac*-InCl₃(H₂O)₃]·3(dioxane) (Whitlow & Gabe, 1975) feature an extensive network of hydrogen bonding between the coordinated water molecules and the organic ligands which serves to stabilize each complex. Similarly, for InCl₃·4H₂O, it was concluded that an [InCl₃(H₂O)₂] unit was enmeshed in a network of hydrogen bonding incorporating solvate water molecules (Wignacourt *et al.*, 1982).

In the title compound, which contains two molecules in the asymmetric unit (Fig. 1), each sixcoordinate metal centre exhibits a distorted *fac*octahedral geometry, with interligand angle ranges Cl— In—Cl 95.29 (3)–103.65 (3)° and O—In—O 77.71 (9)– 83.96 (10)° (Table 1); these values are consistent with a steric effect opening up the angles between the larger ligand atoms. A survey of complexes of indium(III) halides (Knop *et al.*, 1987) predicts the In—Cl bond distance for an InCl₃ fragment in a neutral six-coordinate environment to be 2.432 (17) Å, based upon a linear function of the coordination number and the charge. The observed In—Cl bond lengths in the title compound range from 2.4203(8) to 2.4662(7) Å; these are within the predicted range, but are perceptibly longer than those reported for the corresponding O-donor complex $[(InCl_3)_2(DME)_3]$ (DME is CH₃OCH₂CH₂OCH₃), for which the range is 2.391 (1)-2.404 (2) Å (Carta et al., 1995). The In-O bond distances in (I) are in the range 2.191 (2)-2.224 (2) Å and may be compared with those in similar octahedral In^{III} hydrate systems, e.g. 2.313 (8) Å for [InCl₃(H₂O)(Me₃AsS)₂] (Robinson et al., 1988), 2.239 (8) Å for [InCl₃(bipy)(H₂O)] (Malyarick et al., 1992), 2.231 (4) Å for [InCl₃(Me₃PO)₂- (H_2O)]·H₂O (Robinson *et al.*, 1990), 2.201 (5) Å for $[In(L^1)Cl(ox)(H_2O)] \cdot 2H_2O$ [L¹ is pyridine-2,6-bis-(acetyloxime) and ox is oxalate; Abram et al., 1997] and 2.199-2.283 Å for [fac-InCl₃(H₂O)₃]·3(dioxane) (Whitlow & Gabe, 1975).

Fig. 1. View of the structure of (I) showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Interestingly, the tris-solvate [InCl₃(thf)₃] (thf is tetrahydrofuran) exhibits a six-coordinate mer-octahedral geometry (Wells et al., 1994), with a mean In-Cl distance of 2.422 Å. The variation in geometry from fac- to mer- (in changing the ligand from water to thf) is presumably due to the increased steric demands of the thf ligands. However, this must be a borderline situation because, under less forcing conditions, the InCl₃-thf system also forms the bis-adduct, which exhibits fivecoordinate trigonal bipyramidal geometry, with the two trans-thf ligands in axial positions (Self et al., 1993) and a mean In-Cl distance of 2.321 Å. With more bulky ligands, such as Me₃N, only five-coordinate adducts are known, e.g. $[InCl_3(Me_3N)_2]$ is identified as trigonal bipyramidal with trans-trimethylamine groups (Karia et al., 1986) and a mean In-Cl distance of 2.360 Å.

Unexpectedly, all the H atoms were located from electron-density maps; during refinement they were

restrained to give common O—H and $H \cdots H$ distances. Each water molecule is hydrogen bonded to two Cl atoms, thereby producing an infinite threedimensional structure. The O···Cl hydrogen-bonded distances (Table 2) are comparable with or less than the sum of the van der Waals radii (2.27 Å; Bondi, 1964). The O—H···Cl angles are in the range 134 (4)–171 (3)°, but these are unlikely to be accurate in such a system.

Experimental

n-Butyl acetate (0.90 ml, 6.8 mmol) was added to a suspension of $InCl_3$ (0.50 g, 2.26 mmol) in hexane (30 ml) under argon, and the reaction mixture was heated at 333 K for 12 h. The resulting colourless solution was concentrated and stored at 278 K for several days, yielding crystals of the title compound (approximate yield of 7%). Satisfactory microanalytical data could not be obtained.

Crystal data

[InCl₃(H₂O)₃] $M_r = 275.22$ Monoclinic $P2_1/n$ a = 12.0332 (6) Å b = 10.5925 (6) Å c = 12.1984 (7) Å $\beta = 107.432$ (3)° V = 1483.42 (14) Å³ Z = 8 $D_x = 2.465$ Mg m⁻³ D_m not measured

Data collection

Siemens SMART CCD areadetector diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.226, T_{max} = 0.337$ 7552 measured reflections 2871 independent reflections

2443 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 26^{\circ}$ $h = -14 \rightarrow 14$ $k = -13 \rightarrow 12$ $l = -15 \rightarrow 10$ Intensity decay: none

Mo $K\alpha$ radiation

Cell parameters from 6887

 $0.38 \times 0.36 \times 0.26$ mm

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\theta=2.09{-}25.99^\circ$

 $\mu = 4.188 \text{ mm}^{-1}$

T = 200 (2) K

Block

Colourless

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.022$	$\Delta \rho_{\rm max} = 0.682 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.048$	$\Delta \rho_{\rm min} = -0.993 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.977	Extinction correction: none
2871 reflections	Scattering factors from
175 parameters	International Tables for
H atoms: see below	Crystallography (Vol. C)
$w = 1/[\sigma^2(F_o^2) + (0.0214P)^2]$	
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1. Selected geometric parameters (Å, °)

In1—012 In1—011 In1—013	2.191 (2) 2.207 (2) 2.217 (2)	In2—O22 In2—O21 In2—O23	2.205 (2) 2.223 (2) 2.224 (2)
In1—C112 In1—C111	2.4232 (8) 2.4358 (8)	In2—Cl23 In2—Cl22	2.4203 (8) 2.4403 (7) 2.4568 (7)
In1CI13	2.4002(7)	112	2.4308 (7)

O12-In1-O11	81.26(10)	O22—In2—O21	81.08 (9)
O12-In1-O13	77.72 (9)	O22-In2-O23	83.96 (10)
O11—In1—O13	83.13 (10)	O21—In2—O23	77.71 (9)
O12-In1-C112	163.54 (7)	O22—In2—Cl23	90.42 (7)
011—In1—C112	93.16(7)	O21—In2—Cl23	87.34 (7)
O13—In1—Cl12	86.27 (7)	O23—In2—Cl23	164.66 (7)
O12-In1-Cl11	95.81(7)	O22—In2—Cl22	170.13 (7)
011—In1—C111	88.22 (7)	O21—In2—Cl22	92.55 (6)
013-In1-Cl11	169.86(7)	O23—In2—Cl22	87.32 (7)
C112—In1—C111	99.50(3)	Cl23—In2—Cl22	96.85 (3)
O12—In1—C113	87.82 (7)	O22—In2—Cl21	87.52 (7)
O11-In1-Cl13	168.82(7)	O21—In2—Cl21	164.26 (7)
O13—In1—C113	92.27 (7)	O23—In2—Cl21	90.39 (7)
Cl12-In1-Cl13	96.71 (3)	Cl23—In2—Cl21	103.65 (3)
Cl11—In1—Cl13	95.29 (3)	Cl22-In2-Cl21	97.20 (3)

Table 2. Hydrogen-bonding geometry (Å, °)

D—H	H···A	$D \cdots A$	$D - H \cdots A$			
0.785 (18)	2.379 (19)	3.157 (3)	171 (3)			
0.779 (19)	2.67 (3)	3.260 (3)	134 (4)			
0.786(19)	2.42 (3)	3.129 (3)	150 (4)			
0.79 (2)	2.43 (2)	3.210 (3)	167 (4)			
0.795 (18)	2.46(2)	3.208 (2)	158 (3)			
0.781 (18)	2.48 (2)	3.214 (3)	158 (3)			
0.75 (2)	2.42(2)	3.149 (3)	164 (5)			
0.762 (19)	2.48(2)	3.220 (2)	164 (5)			
0.750 (19)	2.56(2)	3.285 (3)	164 (4)			
0.751 (19)	2.56(2)	3.283 (3)	161 (4)			
0.765 (19)	2.50(2)	3.242 (3)	165 (4)			
0.75 (2)	2.58(3)	3.236(3)	147 (4)			
Symmetry codes: (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $z - \frac{1}{2}$; (ii) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (iii)						
	$\begin{array}{c} DH\\ 0.785 (18)\\ 0.779 (19)\\ 0.786 (19)\\ 0.79 (2)\\ 0.795 (18)\\ 0.795 (18)\\ 0.751 (18)\\ 0.750 (19)\\ 0.750 (19)\\ 0.751 (19)\\ 0.755 (19)\\ 0.755 (2)\\ +x, \frac{1}{2} - y, \end{array}$	$\begin{array}{c cccc} D & H & H \cdots A \\ 0.785 (18) & 2.379 (19) \\ 0.779 (19) & 2.67 (3) \\ 0.786 (19) & 2.42 (3) \\ 0.79 (2) & 2.43 (2) \\ 0.795 (18) & 2.46 (2) \\ 0.795 (18) & 2.46 (2) \\ 0.75 (2) & 2.42 (2) \\ 0.762 (19) & 2.48 (2) \\ 0.750 (19) & 2.56 (2) \\ 0.751 (19) & 2.56 (2) \\ 0.751 (19) & 2.56 (2) \\ 0.75 (2) & 2.50 (2) \\ 0.75 (2) & 2.58 (3) \\ + x, \frac{1}{2} - y, z - \frac{1}{2}; (ii) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Symmetry code: (i) $\frac{1}{2}$: x, $\frac{1}{2}$; y, $z = \frac{1}{2}$, (ii) $\frac{1}{2}$: x, $\frac{1}{2}$; y, $\frac{1}{2}$; $\frac{1}{2}$; (vi) $\frac{1}{2}$: x, $\frac{1}{2}$; $\frac{$

H atoms were located from electron-density maps and refined using restraints to equalize the O—H distances. They were given isotropic displacement parameters and allowed to refine.

Data collection: SMART (Siemens, 1994a). Cell refinement: SAINT (Siemens, 1995). Data reduction: SAINT. Program(s) used to solve structure: SHELXTL/PC (Siemens, 1994b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXTL/PC.

We wish to acknowledge the use of the EPSRC Chemical Database Service (Fletcher *et al.*, 1996) at the Daresbury Laboratory, England, for access to the Cambridge Structural Database (Allen & Kennard, 1993). We also thank the EPSRC and Alpha Fry Metals Ltd, Surrey, England, for a CASE studentship (DRA), and acknowledge the contributions from Siemens plc, the EPSRC and the University of Warwick for the funding of the X-ray facilities.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1325). Services for accessing these data are described at the back of the journal.

References

- Abram, S., Maichle-Mössmer, C. & Abram, U. (1997). Polyhedron, 16, 2291-2298.
- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
- Atkinson, A. W. & Field, B. O. (1970). J. Inorg. Nucl. Chem. 32, 2601–2606.

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved

- Carta, G., Benetollo, F., Sitran, S., Rossetto, G., Braga, F. & Zanella, P. (1995). Polyhedron, 14, 1923–1928.
 - Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.
 - Karia, R., Willey, G. R. & Drew, M. G. B. (1986). Acta Cryst. C42, 558–560.
 - Knop, O., Cameron, T. S., Adhikesavalu, D., Vincent, B. R. & Jenkins, J. A. (1987). Can. J. Chem. 65, 1527–1556.
 - Malyarick, M. A., Petrosyants, S. P. & Ilyuhin, A. B. (1992). *Polyhedron*, **11**, 1067–1073.
- Robinson, W. T., Wilkins, C. J. & Zhang Zeying (1988). J. Chem. Soc. Dalton Trans. pp. 2187-2192.
- Robinson, W. T., Wilkins, C. J. & Zhang Zeying (1990). J. Chem. Soc. Dalton Trans. pp. 219–227.
- Self, M. F., McPhail, A. T. & Wells, R. L. (1993). Polyhedron, 12, 455-459.
- Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994a). SMART Software Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1994b). SHELXTL/PC Reference Manual. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1995). SAINT. Data Integration Software. Version 4.021. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Streltsova, N. R., Ivanov, M. G., Vashchenko, S. D., Belskii, V. K. & Kalinichenko, I. I. (1991). Koord. Khim. 17, 646–651.
- Wells, R. L., Kher, S. S., Baldwin, R. A. & White, P. S. (1994). Polyhedron, 13, 2371–2735.
- Whitlow, S. H. & Gabe, E. J. (1975). Acta Cryst. B31, 2534-2536.
- Wignacourt, J.-P., Mairesse, G. & Barbier, P. (1980). Acta Cryst. B36, 669-671.
- Wignacourt, J.-P., Mairesse, G. & Barbier, P. (1982). Can. J. Chem. 60, 1747–1750.

Acta Cryst. (1999). C55, 1748-1751

Rb_2MoS_4

JAN ELLERMEIER, CHRISTIAN NÄTHER AND WOLFGANG BENSCH

Institut für Anorganische Chemie, Christian-Albrechts Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany. E-mail: wbensch@ac.uni-kiel.de

(Received 24 May 1999; accepted 23 June 1999)

Abstract

The reaction of $(NH_4)_2MoS_4$, AgI, RbI and S in 1,2-ethanediamine under solvothermal conditions yields red crystals of Rb₂MoS₄, dirubidium tetrasulfidomolybdate(2–), as a minor phase and black powdered Ag₂S as the main product. Rb₂MoS₄ crystallizes like Cs₂MoS₄ and $(NH_4)_2MoS_4$ in the β -K₂SO₄ type. The structure contains tetrahedral $[MoS_4]^{2-}$ anions which are connected *via* Rb⁺ cations.